CH464A/ CH464AN

High-performance Hall latch sensors with built-in freewheeling diode

Features

- Enhanced Sensitivity Options (BOP / BRP): +50/-50 Gauss
- Wide temperature range: $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- Wide operating voltage range: 3.8 V to 30 V
- Output short-circuit protection

Package

SOT-23-3L

- Built-in reverse voltage withstand protection
- Built-in inductance freewheeling diode, with the OUT terminal high voltage discharge capability enhances the protection of the sensor and the circuits
- Lead-Free Package: Flat TO-92S, SOT-23-3L surface mount package

Functional Block Diagram

Applications

- Motor and fan control
- Powertools
- Flow-rate sensing
- Valve and solenoid valve status
- Position sensing
- Speed and RPM (revolutions per minute)

Description

The CH464A and CH464AN are small, versatile digital Hall-effect devices designed to respond to alternating north and south poles.

Bipolar latching sensor ICs have enhanced sensitivity, often allowing the use of cheaper magnets.
Available in two package types, the CH464AS/CH464ANS in an ultra-small package SOT-23-3L surface mount package and the CH464AT/CH464ANT in a leaded flat TO-92S package.

The small size of the CH464AS/CH464ANS requires less printed circuit board space, allowing it to be used in smaller components. Its 3 V capability allows for use in low-voltage applications, improving energy efficiency.

CH464AS/CH464ANS available in tape and reel formats; CH464AT/CH464ANT is available in bulk packaging (1000 pcs per bag).

Table of Contents

1. PRODUCT FAMILY MEMBERS 3
2. PIN DEFINITIONS AND DESCRIPTIONS 3
3. ABSOLUTE MAXIMUM RATINGS 4
4. ESD PROTECTIONS 4
5. FUNCTION DESCRIPTION 4
6. MAGNETIC ACTIVATION 5
7. TEMPERATURE CHARACTERISTICS 5
8. PARAMETERS SPECIFICATION 5
9. TEST CONDITIONS 6
10. APPLICATION INFORMATION 7
11. PACKAGE INFORMATION 9
12. REVISION HISTORY 13
13. DISCLAIMER 13

1. Product Family Members

Part Number	Marking ID	Description
CH464ATB	464A	Bipolar latching, Hall-effect digital sensor IC, TO-92S, bulk packing (1000 units per bag)
CH464ATB-A1	464A	Bipolar latching, Hall-effect digital sensor IC, TO-92S-A1, bulk packing (1000 units per bag)
CH464ATB-A2	464A	Bipolar latching, Hall-effect digital sensor IC, TO-92S-A2, bulk packing (1000 units per bag)
CH464ATB-B2	464A	Bipolar latching, Hall-effect digital sensor IC, TO-92S-B2, bulk packing (1000 units per bag)
CH464ANTB	464AN	Bipolar latching, Hall-effect digital sensor IC, TO-92S, bulk packing (1000 units per bag)
CH464ANTB-A1	464AN	Bipolar latching, Hall-effect digital sensor IC, TO-92S-A1, bulk packing (1000 units per bag)
CH464ANTB-A2	464AN	Bipolar latching, Hall-effect digital sensor IC, TO-92S-A2, bulk packing (1000 units per bag)
CH464ANTB-B2	464AN	Bipolar latching, Hall-effect digital sensor IC, TO-92S-B2, bulk packing (1000 units per bag)
CH464ASR	464A	Bipolar latching, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
CH464ANSR	464AN	Bipolar latching, Hall-effect digital sensor IC, SOT-23-3L, tape and reel packing (3000 units per reel)

2. Pin Definitions and Descriptions

SOT-23-3L(S)	TO-92S(T)	Name	Type	Function
1	1	VDD	Supply	Supply Voltage pin
2	3	OUT	Output	Open Collector Output pin (include freewheeling diode)
3	2	GND	Ground	Ground pin

SOT-23-3L

TO-92S

3. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply Voltage	$\mathrm{V}_{\text {DD }}$	-	40	V
Reverse Voltage	$\mathrm{V}_{\text {RDD }}$	-22	-	V
Supply Current	I_{DD}	-	20	mA
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.3	40	V
Output Current	$\mathrm{I}_{\text {OUT }}$	-	20	mA
Operating Ambient Temperature	T_{A}	-40	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{S}	-50	150	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{J}	-50	165	${ }^{\circ} \mathrm{C}$
Magnetic Flux	B	No Limit		Gauss

Note 1: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability

4. ESD Protections

Parameter	Value	Unit
All pins $^{1)}$	$+/-4000$	V
All pins $^{2)}$	$+/-400$	V
All pins $^{3)}$	$+/-1500$	V

1) HBM (human body mode, 100pF, 1.5 kohm) according to MIL-STD-883H Method 3015.8
2) MM (Machine Mode C=200pF, R=0 Ω) according to JEDEC EIA/JESD22-A115
3) CDM (charged device mode) according to JEDEC EIA/JESD22-C101F

5. Function Description

The CH464A/CH464AN exhibits latch magnetic switching characteristics. Therefore, it requires both south and north poles to operate properly.
The device behaves as a latch with symmetric operating and release switching points (BOP=|BRP|). This means magnetic fields with equivalent strength and opposite direction drive the output high and low.
Removing the magnetic field $(B \rightarrow 0)$ keeps the output in its previous state. This latching property defines the device as a magnetic memory.
A magnetic hysteresis BHYST keeps BOP and BRP separated by a minimal value. This hysteresis prevents output oscillation near the switching point.
tech

6. Magnetic Activation

7. Temperature Characteristics

8. Parameters Specification

(At 3.8 V to 30 V supply, 20 mA load, $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ except where otherwise specified.)

Symbol	Parameter	Test Condition		Min	Typ.	Max	Units
$V_{D D}$	Supply voltage	$-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		3.8		30	V
I_{DD}	Supply Current	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		-	5.0	10	mA
$\mathrm{V}_{\text {DSon }}$	Output saturation voltage	at 20mA, Gauss >120		-		0.6	V
loff	Output Leakage Current	B<-120GS		-		10	uA
TR	Output rise time	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \text { at } 25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \end{gathered}$		-	-	1.5	uS
TF	Output fall time	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \text { at } 25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF} \end{gathered}$		-	-	1.5	uS
$\mathrm{R}_{\text {TH }}$	Thermal resistance: CH464AS (SOT-23-3L) CH464AT (TO-92S)		-		$\begin{aligned} & 303 \\ & 203 \\ & \hline \end{aligned}$	-	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$
Bop	Magnetic operating point	CH464A	$-40^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$	5	50	100	Gauss
$\mathrm{B}_{\text {RP }}$	Magnetic release point		$-40^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$	-100	-50	-5	Gauss
$B_{\text {HYSt }}$	Magnetic hysteresis window		$\begin{gathered} \text { TA }=25^{\circ} \mathrm{C} \\ \|\mathrm{BOP}-\mathrm{BRP}\| \end{gathered}$	60	100	140	Gauss
Bop	Magnetic operating point	CH464AN	$-40^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$	-100	-50	-5	Gauss
$B_{\text {RP }}$	Magnetic release point		$-40^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$	5	50	100	Gauss
Bhyst	Magnetic hysteresis window		$\begin{gathered} \mathrm{TA}=25^{\circ} \mathrm{C} \\ \|\mathrm{BOP}-\mathrm{BRP}\| \end{gathered}$	60	100	140	Gauss

RLIM $^{(1)}$	Output current limitation Resistor		-	60	-	Ohm
$\mathrm{F}_{\text {sw }}$	Maximum Switching Frequency				100	KHz
T	Operating temperature		-40	-	150	${ }^{\circ} \mathrm{C}$
T_{S}	Storage temperature:	-	-40	-	150	${ }^{\circ} \mathrm{C}$

(1) Current limitation resistor guaranteed by design

NOTICE

Bipolar Hall-effect sensor ICs may have an initial output in either the ON or OFF state if powered up with an applied magnetic field in the differential zone (applied magnetic field >Brp and <Bop). Cosemitech recommends allowing $10 \mu \mathrm{~s}$ for output voltage to stabilize after supply voltage has reached 5 V .

NOTICE

The magnetic field strength (Gauss) required to cause the switch to change state (operate and release) will be as specified in the magnetic characteristics. To test the switch against the specified magnetic characteristics, the switch must be placed in a uniform magnetic field.

9. Test Conditions

10. Application Information

10.1. Typical Application

It is recommended that an external capacitor Cl is connected to the supply. This can reduce the noise injected into the device. Normal 0.1 uF is suggested.

10.2. Device Output

If the device is powered on with a magnetic field strength between BRP and BOP , then the device output is indeterminate and can either be Hi -Z or Low. If the field strength is greater than BOP, then the output is pulled low. If the field strength is less than BRP, then the output is released.

10.3. Typical Output Waveform

(The TO-92S package as an example)

11. Package Information

TO-92S Dimensions			
Symbol	Dimensions In Millimeters		
	Min	Typ	Max
A	2.9	3.0	3.1
b	0.35	0.39	0.56
b1		0.44	
C	0.36	0.38	0.51
D	3.9	4.0	4.1
E	1.42	1.52	1.62
E1		0.75	
e		1.27	
e1		2.54	
L	13.5	14.5	15.5
L1		1.6	
$\theta 1$		6°	
$\theta 2$		3°	
$\theta 3$		45°	
$\theta 4$		3°	

TO-92S-A1 Dimensions			
Symbol	Dimensions In Millimeters		
	Min	Typ	Max
A	3.08	3.18	3.28
b	0.38	0.44	0.56
b1		0.44	
c	0.36	0.38	0.51
D	4.0	4.1	4.2
E	1.47	1.57	1.67
E1		0.76	
e		1.27	
e1		2.54	
L	13.5	14.5	15.5
L1		2.8	
$\theta 1$		6°	
$\theta 2$		3°	
$\theta 3$		45°	
$\theta 4$		3°	

TO-92S-A2 Dimensions			
Symbol	Dimensions In Millimeters		
	Min	Typ	Max
A	3.08	3.18	3.28
b	0.38	0.44	0.56
b1		0.44	
c	0.36	0.38	0.51
D	4.0	4.1	4.2
E	1.47	1.57	1.67
E1		0.76	
e		1.27	
e1		2.54	
L	15.5	15.7	16.2
L1		2.8	
$\theta 1$		6°	
$\theta 2$		3°	
$\theta 3$		45°	
$\theta 4$		3°	

TO-92S-B2 Dimensions			
Symbol	Dimensions In Millimeters		
	Min	TYP	Min
A	2.9	3.0	3.1
b	0.35	0.39	0.56
b1		0.44	
c	0.36	0.38	0.51
D	3.9	4.0	4.1
E	1.42	1.52	1.62
E1		0.75	
e		1.27	
e1		2.54	
L	15.5	15.7	16.2
L1		1.6	
$\theta 1$		6°	
$\theta 2$		3°	
$\theta 3$		45°	
$\theta 4$		3°	

Package Designator SOT-23-3L

SOT-23-3L Dimensions

SOT-23-3L Dimensions				
Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	$0.950(\mathrm{BSC})$		$0.037(\mathrm{BSC})$	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

12. Revision History

Date	Revision	Change
Mar 2021	1.0	Initial release
Mar 2022	1.2	Update Package
Jun 2023	1.3	Update Package, Functional Block Diagram

13. Disclaimer

This document may not be reproduced in whole or in part in any form without the prior written consent of Cosemitech. All rights reserved © In 2023, Cosenitech Incorporated.

Cosmitech reserves the right to make changes to the information published in this document at any time without prior notice.

Cosmitech's products are limited to normal commercial use only. Without the express written consent of Cosmitech, Cosmitech products shall not be used as critical components of life support equipment or systems.

For the latest version of the document, please visit our website at https://www.cosemitech.com/

