MSKSEMI 美森科

ESD

TVS

TSS

MOV

GDT

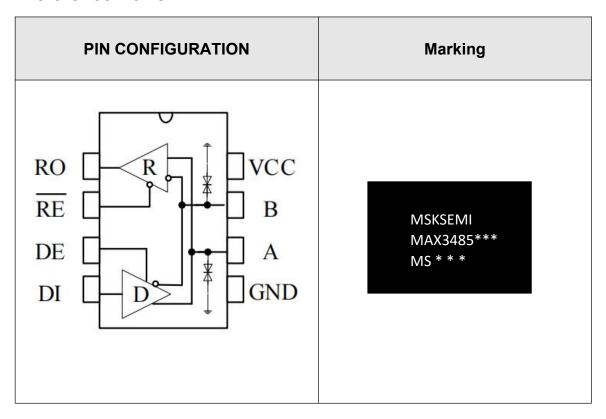
PIFD

MAX3485E

Product specification

DESCRIPTION

MAX3485E is a RS-485 transceiver with 3.0V~5.5V wide power supply, bus port ESD protection capacity of over 15kV HBM, bus with stand voltage range of ±15V, half duplex, low power consumption, and fully meet the requirements of TIA / EIA-485 standard.


MAX3485E includes a driver and a receiver, both of which can be enabled and closed independently. Wh en both are disabled, both the driver and the receiver output are high resistance state. MAX3485E has 1/8 load, which allows 256 MAX3485E transceivers to be connected to the same communication bus. It can re alize error-free data transmission up to 12Mbps.

FEATURES

- 3.0V~5.5V Wide Power Range, Half-Duplex
- ESD Protection for RS-485 I/O Pins ±15kV, Human Body Model
- Bus Fault Tolerance and Withstand Voltage Reach ±15V
- 1/8 Unit Load , Allow Up to 256 Transceivers on the Bus
- Driver Short-Circuit Output Protection

- Low Power Off Function
- Receiver Open-Circuit Failure Protection
- Strong Anti-Noise Ability
- Integrated Transient Voltage Suppression Function
- Data transmission up to 12Mbps in an electric noise environment

Reference News

PINNING

PIN	SYMBOL	DESCRIPTION		
1	RO	Receiver Output. When /RE is low and if A - B≥- 10mV, RO will be high; if A - B≤-200mV, RO will be low.		
2	/RE	Receiver Output Enable. Drive /RE low to enable RO; RO is high impedance when /RE is high. Drive /RE high and DE low to enter low-power shutdown mode.		
3	DE	Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high impedance when DE is low. Drive /RE high and DE low to enter low-power shutdown mode.		
4	DI	Driver Input. With DE high, a low on DI forces non-inverting output low and inverting output high. Similarly, a high on DI forces non-inverting output high and inverting output low.		
5	GND	Ground		
6	А	non-inverting Receiver Input and non-inverting Driver Output		
7	В	Inverting Receiver Input and Inverting Driver Output		
8	VCC	Positive Supply		

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	VCC	+7	V
Control Input Voltage	/RE , DE , DI	-0.3~VCC+0.5	V
Receiver Input Voltage	А, В	- 15~+15	V
Receiver Output Voltage	RO	-0.3~VCC+0.5	V
Operating Temperature Ranges		-40~125	${\mathbb C}$
Storage Temperature Range		-60~150	$^{\circ}$
Lead Temperature		300	$^{\circ}$
	SOP8	470	mW
Continuous Power Dissipation	MSOP8	830	mW
	DIP8	700	mW

The maximum limit parameters means that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal opration of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

DRIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Differential Driver Output (No load)	V _{OD1}		3		5.5	V
Differential Driver	V _{OD2}	Figure 2 , RL = 54Ω , VCC= 3.3 V	1.5		VCC	V
Output		Figure 2 , $RL = 54 \Omega$, $VCC=5V$	1.5		VCC	
Change in Magnitude of Driver Differential Output Voltag (NOTE1)	ΔV_{OD}	Figure 2 , $RL = 54 \Omega$			0.2	V
Driver Common-Mode Output Voltage	Voc	Figure 2 , $RL = 54 \Omega$			3	V
Change in Magnitude of Common-Mode Output Voltage (NOTE1)	ΔV_{OC}	Figure 2 , $RL = 54 \Omega$			0.2	V
Input High Voltage	$V_{ m IH}$	DE , DI , /RE	2.0			V
Input Low Voltage	$V_{\rm IL}$	DE , DI , /RE			0.8	V
Logic Input Current	I_{IN1}	DE , DI , /RE	-2		2	μΑ
Output short-circuit current, short-circuit to high	I_{OSD1}	short-circuit to 0V~12V			250	mA
Output short-circuit current, short-circuit to low	Iosd2	short-circuit to -7V~0V	-250			mA

(Unless otherwise noted , Temp= T_{MIN} - T_{MAX} , Temp=25C)

NOTE1: ΔV_{OD} and ΔV_{OC} are the changes in V_{OD} and V_{OC} , respectively, when the DI input changes state.

RECEIVER DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input current (A, B)	I _{IN2}	DE = 0 V , VCC=0 或 3.3/5V V _{IN} = 12 V			125	μА
	IIN2	DE = 0 V , VCC=0 或 3.3/5V V _{IN} = -7 V	- 100			μА

Positive input threshold voltage	V_{IT^+}	-7V≦V _{CM} ≦ 12V			- 10	mV
Reverse input threshold voltage	V _{IT} -	-7V≦V _{CM} ≤ 12V	-200			mV
Input hysteresis voltage	V _{hys}	-7V≦V _{CM} ≤ 12V	10	30		mV
Receiver Output High Voltage	V _{OH}	$I_{OUT} = -2.5 \text{mA}, V_{ID}$ $= +200 \text{ mV}$	VCC- 1.5			V
Receiver Output Low Voltage	Vol	$I_{OUT} = +2.5 \text{mA}, V_{ID}$ = -200 mV			0.4	V
Three-State Output Current at Receiver	Iozr	$0.4 \text{ V} < V_{O} < 2.4 \text{ V}$			±1	μА
Receiver Input Resistance	R _{IN}	-7V≦V _{CM} ≤ 12V	96			kΩ
Receiver Short-Circuit Output Current	I_{OSR}	0 V≤Vo≤VCC	±8		±90	mA

(Unless otherwise noted , $\mbox{Temp=}T_{MIN}\!\!\sim\!\!T_{MAX}$, $\mbox{Temp=}25\text{C})$

SUPPLY CURRENT

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
		/RE=0V,				
		DE = 0 V,		240	650	μΑ
	I _{CC1}	VCC=3.3V				
	ICCI	/RE=0V,				
		DE = 0 V		270	750	μΑ
Supply Current		VCC=5V				
Supply Cultent		/RE=VCC,				
	Icc2	DE=VCC,		250	650	μΑ
		VCC=3.3V				
		/RE=VCC,				
		DE=VCC,		280	750	μΑ
		VCC=5V				
		/RE=VCC,				
		DE=0V,		0.2	10	μΑ
Shutdown current	Ishdn	VCC=3.3V				
Silado Wil Callell	ISHDIN	/RE=VCC,				
		DE=0V,		0.2	10	μΑ
		VCC=5V				

DRIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Driver differential	tDD			20	40	
Output delay	IDD	$R_L = 60 \Omega,$		20	40	ns
Driver differential		$C_{L1}=C_{L2}=100pF$				
output	tTD	(figure3 \(4)		12	28	ns
Transition time						
Drive propagation						
delay	tPLH			20	40	ns
From low to high						
Drive propagation		$R_L = 27 \Omega,$				
delay	tPHL	(figure3 、4)		20	40	ns
From high to low						
tрլн-tрнг	tPDS			1	8	ns
Driver Enable to	tPZH				55	ns
Output High		$R_L = 110\Omega$,			33	
Driver Enable to Output low	tPZL	(figure5 、 6)			55	ns
Driver Disable Time from Low	tPLZ	$R_L = 110\Omega$,			85	ns
Driver Disable Time from high	tPHZ	(figure 5 、 6)			85	ns
In Shutdown mode, Enable to Output High	tDSH	$R_L = 110\Omega$, (figure 5 , 6)		20	100	ns
In Shutdown mode, Enable to Output low	tDSL	$R_L = 110\Omega$, (figure 5 , 6)		20	100	ns

RECEIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver Input to output from low to high	tRPLH	C _L =15pF		60		ns
Receiver Input to output from high to low	tRPHL	Figure7 & Figure8		60		ns

t _{rplh} - t _{rphl}	tRPDS			3	10	ns
Receiver Enable to Output Low	tRPZL	C _L =15pF Figure 7& Figure 8		15	40	ns
Receiver Enable to Output high	tRPZH	C _L =15pF Figure7 & Figure8		15	40	ns
Receiver Disable Time from Low	tPRLZ	C _L =15pF Figure7 & Figure8		25	55	ns
Receiver Disable Time from high	tPRHZ	C _L =15pF Figure7 & Figure8		25	55	ns
In Shutdown mode, Enable to Output High	tRPSH	C _L =15pF Figure 7 & Figure 8		150	500	ns
In Shutdown mode, Enable to Output low	tRPSL	C _L =15pF Figure7 & Figure8		150	500	ns
Time to Shutdown	tSHDN	NOTE2	50		300	ns

NOTE2: If the enable inputs are RE=high and DE=low for less than 50ns, the device is guaranteed not To enter shutdown. If the enable inputs are in this state for at least 300ns, the device is guaranteed to have entered shutdown.

FUNCTION TABLE

Driver Function

CONT	CONTROL INPUT OUTPUT					
/RE	DE	DI	A	В		
х	1	1	Н	L		
Х	1	0	L	Н		
0	0	Х	Z	Z		
1	0	Х	Z(shutdown)			
X=irr	X=irrelevant; Z=high impedance					

Receiver Function

CONTROL		INPUT	OUTPUT			
/RE	DE	A-B	RO			
0	Х	≥- 10mV	Н			
0	Х	≤-200mV	L			
0	х	Open/shor t circuit	Н			
1	Х	Х	Z			
2	X=irrelevant; Z=high impedance					

TEST CIRCUIT

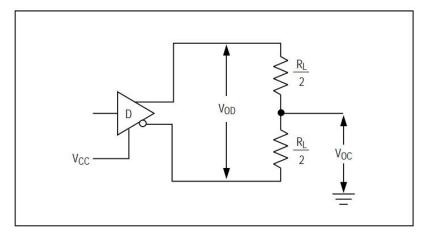
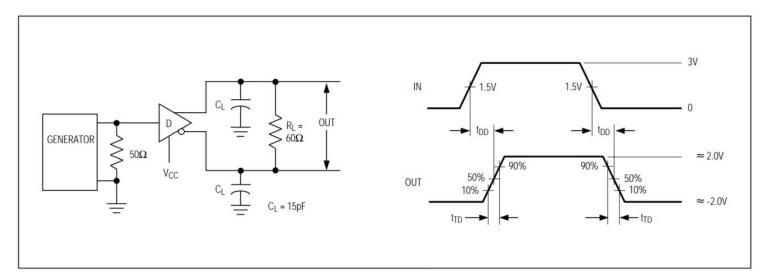



Figure 2 Driver DC test load

CL includes probe and stray capacitance (the same below)

Figure 3 Differential delay and transit time of driver



Figure 4 Drive propagation delay

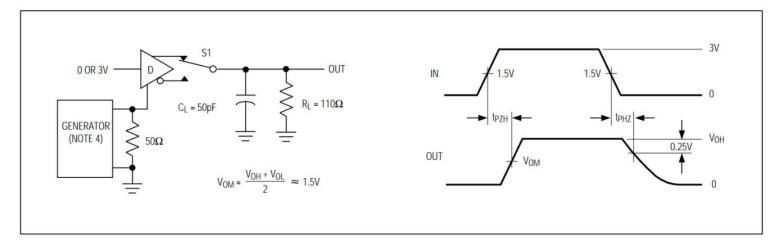


Figure 5 Drive enable and disable time

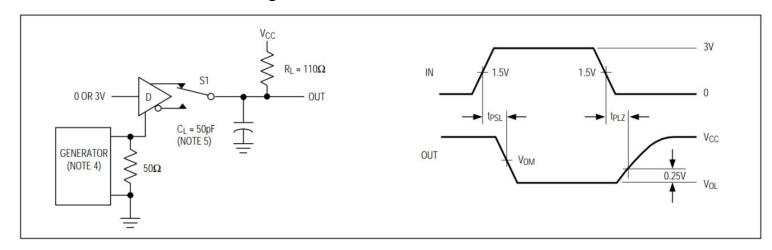


Figure 6 Drive enable and disable time

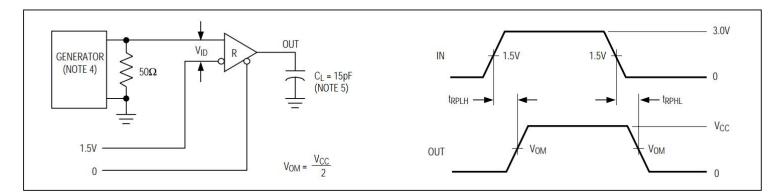


Figure 7 Receiver propagation delay test circuit

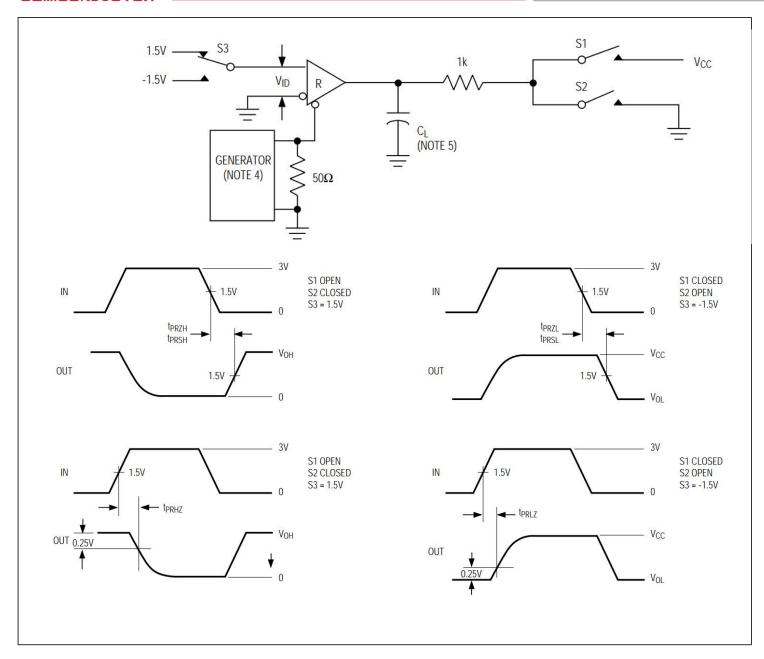


Figure 8 Receiver enable and disable time

ADDITIONAL DESCRIPTION

1 Sketch

MAX3485E is a half-duplex high-speed transceiver with $3.0 \,\mathrm{V}{\sim}5.5 \,\mathrm{V}$ wide power supply, bus port ESD protection capacity of more than $15 \,\mathrm{kV}$ HBM, bus DC withstand voltage of more than $\pm 15 \,\mathrm{V}$, used for RS-485/RS-422 communication, including a driver and receiver. It has the functions of fail-safe, over-v oltage protection, over-current protection and over temperature protection. SIT3485E realizes error-free dat a transmission up to 12Mbps.

2 Allowing up to 256 Transceivers on the Bus

The input impedance of the standard RS485 receiver is $12k\Omega$ (1 unit load), and the standard driver can drive up to 32 unit loads. The receiver of MAX3485E transceiver has 1/8 unit load input impedance ($96k\Omega$), which allows up to 256 transceivers to be connected on the same communication bus in paral lel. These devices can be combined arbitrarily or with other RS485 transceivers. Any combination of the ese devices and/or other RS-485 transceivers with a total of 32 unit loads or less can be connected to the line.

3 Driver output protection

Tow mechanisms prevent excessive output current and power dissipation caused by faults or by bus contention. First, over-current protection, fast short circuit protection in the mode voltage range (refer to typical operating characteristics). Second, when the temperature of the tube core exceeds 140C, the output of the driver is forced into the high resistance state.

4 Typical Applications

4. 1Bus Networking: MAX3485E RS485 transceiver is designed for bidirectional data communication on m ulti-point bus transmission line. Figure 9 shows a typical network application circuit. These devices can also be used as linear repeaters with cables longer than 4000 feet. In order to reduce reflection, terminal m atching should be carried out at both ends of the transmission line with its characteristic impedance, and the length of branch lines outside the main line should be as short as possible

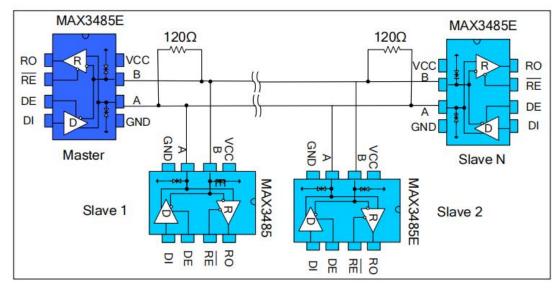


Figure 9 Bus type RS485 half duplex communication

4.2 Hand in hand Networking: also known as daisy chain topology, is the standard and specification of RS485 bus wiring, and is the RS485 bus topology recommended by TIA and other organizations. The wiring mode is that the main control equipment and a plurality of slave control equipment form a hand-held connection mode, as shown in Figure 10, and the hand-held mode is no branches. This wiring mode has the advantages of small signal reflection and high communication success rate.

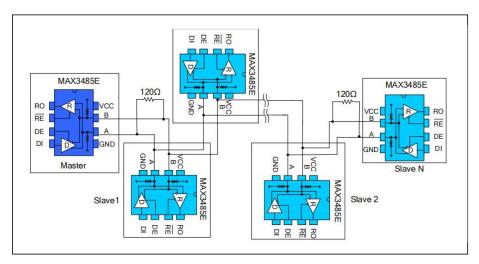
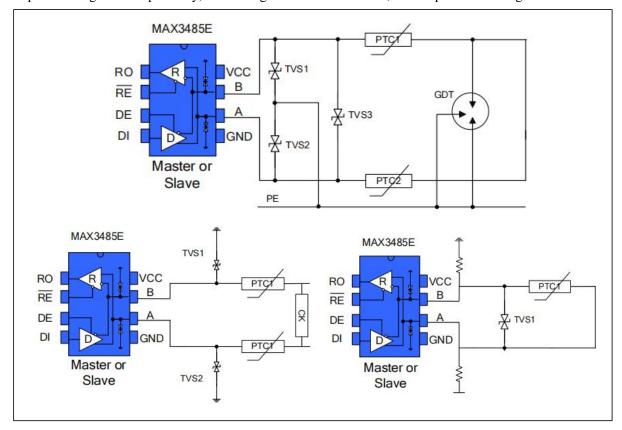
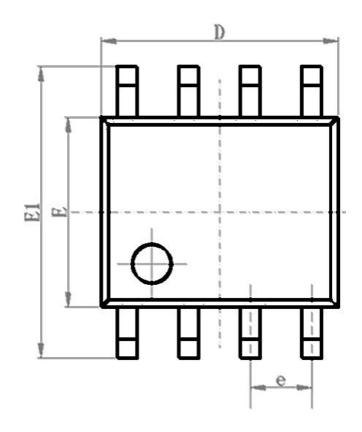
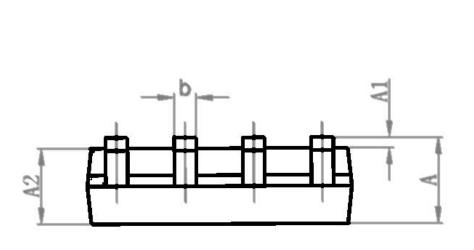
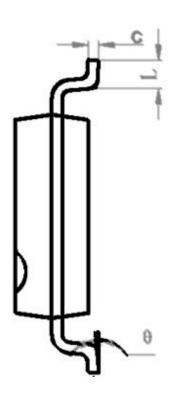



Figure 10 Hand in hand RS485 half duplex communication network

4.3 Bus port protection: in severe environment, RS485 communication port is usually provided with electrostatic protection, lightning surge protection and other additional protection, and even the plan to prevent 380V market electricity access is needed to avoid the damage of intelligent instrument and industrial control host. Figure 11 shows three common RS485 bus port protection schemes. The first is the scheme of three-level protection by connecting TVS devices in parallel with A,B port to the protective ground, TVS devices in parallel with A,B port, thermistor in series with A,B port, gas discharge tube in parallel to the protective ground; the second is the scheme of three-level protection by connecting TVS in parallel with A,B port to the ground, thermistor in series with A,B port, and varistor in parallel with A,B port; the third is the scheme of three-level protection by connecting AB with pull-up or pull-down resistor to power and ground respectively, connecting TVS between A & B, A or B port connecting thermistor.

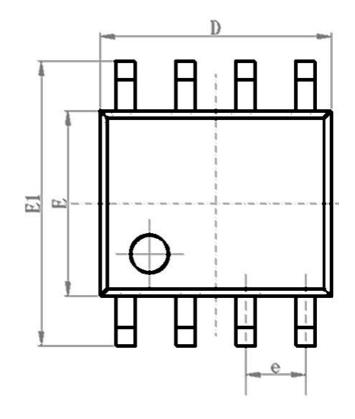


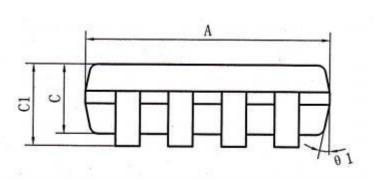


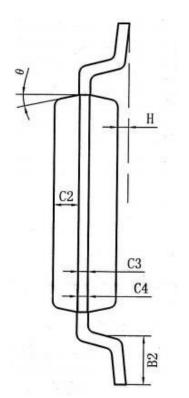

SOP8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MAX./mm
А	1.40	-	1.80
A1	0.10	-	0.25
A2	1.30	1.40	1.50
b	0.38	-	0.51
D	4.80	4.90	5.00
E	3.80	3.90	4.00
E1	5.80	6.00	6.20
е		1.27BSC	
L	0.40	0.60	0.80
С	0.20	-	0.25
θ	0°	-	8°

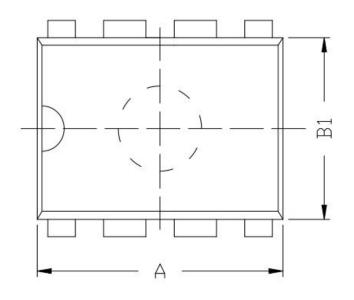


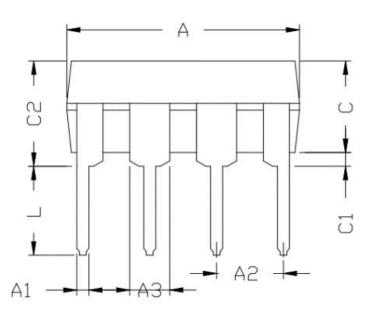


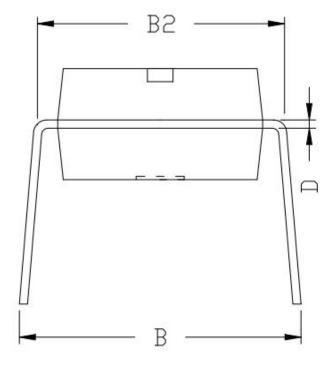


MSOP8 /8µMAX / VSSOP8 DIMENSIONS PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MAX./mm
Α	2.90	3.0	3. 10
A1	0.28		0.35
A2	0.65TYP		
А3	0.375TYP		
В	2.90	3.0	3. 10
B1	4.70		5.10
B2	0.45		0.75
С	0.75		0.95
C1			1.10
C2	0.328 TYP		
C3	0.152		
C4	0.15		0.23
Н	0.00		0.09
θ	12° TYP		






DIP8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MAX./mm
А	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2	2.54TYP		
А3	1.525TYP		
В	8.40	8.70	9.10
B1	6.20	6.40	6.60
B2	7.32	7.62	7.92
С	3.20	3.40	3.60
C1	0.50	0.60	0.80
C2	3.71	4.00	4.31
D	0.20	0.28	0.36
L	3.00	3.30	3.60

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE	PACKAGE
MAX3485ESA-MS	-40C~125C	SOP8
MAX3485EUA-MS	-40C~125C	MSOP8/VSSOP8/8 µ MAX
MAX3485EPA-MS	-40C~125C	DIP8

Tapered package is 2500 pcs/reel. The HVSON8/DFN3*3-8 package is 5000 pcs/reel.

Important statement

MSKSEMI reserves the right to change the above-mentioned information without prior notice.

Attention

- Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.
- MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.
- Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer'sproducts or equipment.
- MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possiblethat these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuitsfor safedesign, redundant design, and structural design.
- In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.